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Energy loss from an electron pulse in a plasma 

W W Zachary and A H Aitken 
Naval Research Laboratory, Washington DC 20375, USA 

Received 13 July 1976 

Abstrad. We present upper and lower bounds for the rate of energy loss by a high intensity 
Gaussian pulse of finite length propagating in a cold dense homogeneous plasma. For 
sufficiently high plasma conductivity these bounds coalesce yielding an explicit expression 
for the dissipated power. 

1. Introduction 

The purpose of this paper is to discuss the power P lost by a high intensity relativistic 
electron pulse propagating in a plasma and to demonstrate that, in the special case of a 
Gaussian pulse, upper and lower bounds can be obtained for P. If the conductivity of 
the plasma is sufficiently large, these bounds coincide thereby yielding an explicit result 
for P. 

We will consider a single high intensity pulse of finite length propagating in an 
homogeneous cold dense plasma of infinite extent. It is well known (Cox and Bennett 
1970, Hammer and Rostoker 1970, Lee and Sudan 1971, Lovelace and Sudan 1971)t 
that such a pulse induces a ‘return current’ and with it an electric field E so that the 
power lost is given by 

P =  I J . E  d3x (1) 

where J denotes the beam current density. 
It will be supposed that the plasma can be treated as a conducting medium with 

constant conductivity and that it is a good conductor so that the displacement current 
can be neglected in Maxwell’s equations. In addition, we shall assume that the 
beam-plasma system has cylindrical symmetry about the z a x k  and omit consideration 
of any beam-plasma instabilities. The latter condition seems to be reasonable because 
the collective interaction of the beam electrons with the plasma is expected to be weak 
for high energy beams and small beam-plasma density ratios (Lovelace and Sudan 
1971). 

2. Formulation and evaluation 

Under the above assumptions we find the following expression for the electric field E in 

t Many more references are given by Davidson and Hui (1975). 
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terms of the beam current density J (using MKS units): 

E ( x , t ) = j  ...j G ( x - x ’ , t - t ’ )  d3x’dt’ (2) 

where 

G(x ,  t )  = O ( t ) ( 4 ~ D t ) - ~ / ~  exp[-(x)’/4Dt] 

denotes the customary Green function for the diffusion equation, O ( t )  being the usual 
Heaviside step function 

We have defined a diffusion coefficient D = (pea)-' and have used the relation 

1 V . E = - -V . J, 
U 

which follows from Maxwell’s equations. 
We will take the beam current density in the form, 

J = e,J = e,l8(vt - z )  O(z - U( t - T))g(r)  ( 3 )  

where I denotes the current and we have introduced cylindrical coordinates. e, denotes 
a unit vector along the positive z axis, and g(r )  the (two-dimensional) radial extension 
of the pulse. For convenience we have introduced the pulse duration T so that the pulse 
length is L = UT, v being the pulse velocity which will hereafter be taken as the velocity 
of light c. 

It will be convenient to have a separate notation for the first term of (2): 

Eo(r, z ,  t )  = e,E,(r, z ,  t )  = e, I. . . I G ( r - r ’ ,  z -2’) 

In order to evaluate the remaining term in (2) we note from ( 3 )  that the beam current 
density is parallel to the z axis and easily derive the following relation: 

so that we can write the total electric field (2) in the for=, 

E(r,  z, t > = e ,  1+- - E&, z, t ) + E l ( r ,  2, t ) .  ( 2 2 )  ( 5 )  

In obtaining this expression we have decomposed the gradient operator in (2) into its 
components along the longitudinal and radial directions. The term in ( 5 )  involving the z 
derivative arises from the longitudinal gradient wherein we have used a familiar 
argument to replace the operator V,, by -V,. As usual, this involves an integration by 
parts in which one shows that the contribution ‘at infinity’ is zero. This part of the total 
electric field can also be obtained by using (3), (4) and the following familiar property of 
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the derivative of the Dirac delta function 6’: 

This procedure is clearly justified in the present case because one uses (6) with q5 a 
Gaussian function. The field El arises from the radial gradients and will not be 
considered because it does not contribute to (1).  

We will choose our radial function in the form of a normalized Gaussian, 

g(r )  = (4.rrp)-’ exp ( -- ;;) , o<p<oo. (7) 

Physically, the choice of this function amounts to the consideration of a diffuse 
boundary for the pulse. In addition, we can obtain results for the limiting case of a pulse 
of zero width because g is an approximation to a two-dimensional Dirac delta function. 
It will be seen that P is divergent in the limit p + 0. 

In order to compare our results with previous approximate calculations for a 
uniform pulse (M Lampe 1976, private communication) it is convenient to relate the 
parameter p to the radius a of an equivalent uniform pulse. This we do by equating the 
root-mean-square values of the distribution (7) to the root-mean-square radius for a 
uniform pulse, thereby obtaining 

p = a2/8.  (8) 

We now want to compute the rate of energy loss from the pulse using the radial 
function (7). invoking (3) and (9, one contribution to (1) is 

Po= / E d  d2t d r  

( 2  - c ( t  - 7))2 c (z - c ( t  - 7)) - 
-exp(- 4Ds 2 D  

The remaining contribution to P can be obtained by first computing aE,/dz : 

p = -  l-y/a2 -Jd2 r d z  

2 ~ ( 4 . r r ) ~ / ~ D ~ ’ ~  l2 
I c( t - . r )  dz I,” ds s-3/2 (: + Ds) -’ exp( - &) 4 0  - - 

(z-cCt)2 C ( 2 - C C t )  (z-ct+cs)exp ---- ( 4Ds 2 0  

( 4Ds 
- ( z  - c ( t  - 7) + cs) exp - ( Z - C ( t - 7 ) ) 2  - 

(9) 
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The integrations over s in (9) and (10) can be performed by the method summarized 
in the appendix so that we find: 

1 P L - 12oTrI.47 --= Q+7+(240.rr2u2a2)-'(1 -e 
I 2  2 m a  

where 
0 +P 

Q = (2ua7r1")-' I [2a - y ( 1  +e-4a(y-a')] ey2 erfc(y) dy (12) 
a 

in terms of the complementary error function 
oc 

erfc(x) = 2 6 " '  e-" df, 

and we have introduced the parameters 

a = ca/4D = 3Oma and p = L/a .  

Since P denotes the power dissipated by the pulse, it will be negative and we are in a 
position to obtain upper and lower bounds for the positive quantity -P/1*. This we do 
by using the estimates (Abramowitz and Stegun 1964): 

[x + (x2 + 2)1/2~-1 s e x 2  J e+ dt s [x + (x2 + 4 , ~ ) ~ / ~ ] - ~ ,  

Thus, we find the following upper and lower bounds for Q: 

m 

x a o .  (13) 
X 

a + p  +[(a + p ) ' + 4 ~ - ' ] ' / ~  

+;*{(a +P)[(a + ~ ~ z + 4 ~ " ] ' ~ 2 - a ( ~ 2 + 4 ~ - ' ) 1 ' '  + - (a  +p) '}  

+ (6a)-'(1 + p ) 3 -  a3+(aZ+2)3/2-[(a +p) '+  2]'/'}] (14) 

and 

1 a+p+(a+p)2+2) ' /2 
a +(a2+2)'/' = 30 [In ( 

+${(a +P) [ (a  +p)' + 21'1' - a(a'+ 2 y 2  + a' - (a + p y }  

+ ~ ( 6 a ) - ' { ( a  +p)3 - a3  + ( c Y ' + ~ v - ' ) ~ / ' - [ ( ( Y  +p)z+4~- ' ] 3 /2 }  . (15) 1 
In deriving (14) and (15) from (12) we have used (13) and have eliminated the 
exponential factor in the integrand of (12) by means of the inequalities 
e-4a(Y-0) s 1. 

It follows from (1 1) and (15) that P diverges in the limit a + 0. 
Returning to the case a f 0, the above expressions for Q,,, and Qmin simplify 

considerably in the approximation a 2  >> 2. This condition amounts to the requirement 
that the plasma be a good conductor since it is equivalent to 

ua >> 2'/ ' /30~. (16) 
In this connection we recall that a large conductivity has already been assumed in 
omitting the displacement current from Maxwell's equations. 
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In the approximation (16) Q,,, = Q,,, with only the logarithmic terms surviving 
and we obtain 

L +- 1 L  -1. 
--- I2 - [ ( 3Omra") 23Orua2 

30 In 1+- 
P 

We have also simplified the non-logarithmic term since inequality (16) implies 
La >>21/2L/30.rra and we always assume a beam radius much smaller than the pulse 
length. 

In the approximation (16) we can use the well known asymptotic expansion for the 
complementary error function (Abramowitz and Stegun 1964) in (12). One easily 
verifies that substitution of the first term of this expansion in that equation leads to a 
value for -P/12 which is precisely the logarithmic term in (17). The second term in (17) 
represents (approximately) a summation of the remaining terms in the asymptotic 
expansion. However, one does not easily obtain this result from the asymptotic 
expansion approach. 

3. Concluding remarks 

We have obtained an expression for the rate of energy loss from a high intensity 
Gaussian pulse of finite length propagating in a cold dense homogeneous plasma of 
infinite extent. 

Subject to the approximation (16), our result (17) consists of a logarithmic term plus 
a term linear in the pulse length L. By virtue of the relation (8) between our parameter p 
and the radius a of an equivalent uniform pulse (in the root-mean-square sense 
discussed in 5 2) the logarithmic term agrees with approximate calculations for a 
uniform pulse performed independently by M Lampe and E P Lee (1976, private 
communication). Insofar as we are aware, the term linear in L has not previously been 
obtained. Under the assumptions (16) and a << L this term can be comparable with the 
logarithmic term. In fact, this term is always at  least 1/2 of the logarithmic term as is 
easily shown by means of the inequality 

ln(1 + x)  s x, x 3 0 .  

In the event that (16) is not satisfied but the displacement current can still be 
neglected in Maxwell's equations, one can resort to (1 1) and the bounds (14) and (15). 
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Appendix 

Consider the integral, 
m 

G(a, b ;  s) = lo t - ' l2 ( t  + b)-' e-='-' e-sr dt 
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for s 3 0, a > 0, and b > 0. This is needed to evaluate Po and PI, given respectively by 
(9) and (10). A different integral is also needed in the evaluation of P1, but it is readily 
obtained from (A.l)  by differentiation with respect to the parameter a. 

The integral defined in (A.l)  does not appear in the standard tables so that a short 
discussion of our method of evaluation of it may be of interest. 

Consider (A.l) as a function of s, treating a and b as parameters. One finds the 
equation 

with the boundary condition, 

It is then a straightforward matter to integrate (A.2) using (A.3) and standard 
techniques (integrating factor method). One finds 

G ( a ,  b ;  s )  = rb-'12 ealb ebs erfc((bs)1/2+(a/b)1/2). 
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